Media Móvil Del Período N


Cálculo del promedio móvil en Excel En este breve tutorial, aprenderá a calcular rápidamente un promedio móvil simple en Excel, qué funciones utilizar para obtener el promedio móvil de los últimos N días, semanas, meses o años y cómo agregar un movimiento Línea de tendencia promedio a un gráfico de Excel. En un par de artículos recientes, hemos examinado de cerca el cálculo del promedio en Excel. Si has estado siguiendo nuestro blog, ya sabes cómo calcular un promedio normal y qué funciones utilizar para encontrar el promedio ponderado. En el tutorial de hoy, vamos a discutir dos técnicas básicas para calcular el promedio móvil en Excel. En general, el promedio móvil (también denominado media móvil, promedio móvil o media móvil) puede definirse como una serie de promedios para diferentes subconjuntos del mismo conjunto de datos. Se utiliza con frecuencia en estadísticas, previsiones económicas y meteorológicas ajustadas estacionalmente para comprender las tendencias subyacentes. En el comercio de valores, el promedio móvil es un indicador que muestra el valor promedio de un valor en un período de tiempo determinado. En los negocios, es una práctica común para calcular un promedio móvil de las ventas de los últimos 3 meses para determinar la tendencia reciente. Por ejemplo, el promedio móvil de las temperaturas de tres meses se puede calcular tomando el promedio de las temperaturas de enero a marzo, luego el promedio de las temperaturas de febrero a abril, luego de marzo a mayo, y así sucesivamente. Existen diferentes tipos de media móvil, tales como simple (también conocido como aritmética), exponencial, variable, triangular y ponderada. En este tutorial, estaremos estudiando el promedio móvil más comúnmente usado. Calculando el promedio móvil simple en Excel En general, hay dos maneras de obtener un promedio móvil simple en Excel: mediante fórmulas y opciones de línea de tendencia. Los siguientes ejemplos demuestran ambas técnicas. Ejemplo 1. Calcular el promedio móvil durante un cierto período de tiempo Se puede calcular un promedio móvil simple en ningún momento con la función MEDIA. Supongamos que tiene una lista de temperaturas medias mensuales en la columna B y desea encontrar una media móvil de 3 meses (como se muestra en la imagen anterior). Escriba una fórmula normal de promedio para los primeros 3 valores e introdúzcala en la fila correspondiente al 3er valor de la parte superior (celda C4 en este ejemplo) y luego copie la fórmula a otras celdas de la columna: Columna con una referencia absoluta (como B2) si desea, pero asegúrese de utilizar referencias de fila relativa (sin el signo) para que la fórmula se ajusta correctamente para otras celdas. Recordando que un promedio se calcula sumando valores y luego dividiendo la suma por el número de valores a promediar, puede verificar el resultado usando la fórmula SUM: Ejemplo 2. Obtenga el promedio móvil de los últimos N días / semanas / Meses / años en una columna Suponiendo que tiene una lista de datos, por ejemplo Cifras de ventas o cotizaciones de acciones, y desea conocer el promedio de los últimos 3 meses en cualquier momento. Para ello, necesita una fórmula que recalcule el promedio tan pronto como introduzca un valor para el próximo mes. ¿Qué función de Excel es capaz de hacer esto? La buena media antigua en combinación con OFFSET y COUNT. NOMBRE PROMEDIO (OFFSET (primera celda, COUNT (rango completo) - N, 0, N, 1)) Donde N es el número de los últimos días / semanas / meses / años para incluir en la media. No está seguro de cómo usar esta fórmula de promedio móvil en sus hojas de cálculo de Excel El ejemplo siguiente hará las cosas más claras. Suponiendo que los valores a la media están en la columna B comenzando en la fila 2, la fórmula sería la siguiente: Y ahora, vamos a tratar de entender lo que esta fórmula de promedio móvil Excel está haciendo realmente. La función COUNT COUNT (B2: B100) cuenta cuántos valores ya están ingresados ​​en la columna B. Comenzamos a contar en B2 porque la fila 1 es el encabezado de columna. La función OFFSET toma la celda B2 (el primer argumento) como punto de partida y compensa el recuento (el valor devuelto por la función COUNT) moviendo 3 filas hacia arriba (-3 en el 2do argumento). Como resultado, devuelve la suma de valores en un rango que consta de 3 filas (3 en el 4 º argumento) y 1 columna (1 en el último argumento), que es el último 3 meses que queremos. Finalmente, la suma devuelta se pasa a la función MEDIA para calcular el promedio móvil. Propina. Si está trabajando con hojas de trabajo continuamente actualizables en las que es probable que se agreguen nuevas filas en el futuro, asegúrese de proporcionar un número suficiente de filas a la función COUNT para acomodar nuevas entradas potenciales. No es un problema si se incluyen más filas de lo que realmente se necesita, siempre y cuando tenga la primera celda derecha, la función COUNT descartará todas las filas vacías de todos modos. Como probablemente habrás notado, la tabla de este ejemplo contiene datos durante sólo 12 meses, y, sin embargo, el rango B2: B100 se suministra a COUNT, sólo para estar en el lado de guardar :) Ejemplo 3. Obtener el promedio móvil de los últimos valores N Una fila Si desea calcular una media móvil para los últimos N días, meses, años, etc. en la misma fila, puede ajustar la fórmula de desplazamiento de esta manera: Suponiendo que B2 es el primer número en la fila y desea Para incluir los últimos 3 números en el promedio, la fórmula toma la siguiente forma: Creación de un gráfico de promedio móvil de Excel Si ya ha creado un gráfico para sus datos, agregar una línea de tendencia de media móvil para ese gráfico es cuestión de segundos. Para ello, vamos a utilizar la función de Excel Trendline y los pasos detallados a continuación. Para este ejemplo, he creado un gráfico de columnas en 2D (grupo Insertar pestaña Gráficos) para nuestros datos de ventas: Y ahora, queremos visualizar el promedio móvil durante 3 meses. En Excel 2010 y Excel 2007, vaya a Layout gt Trendline gt Más opciones de línea de tendencia. Propina. Si no necesita especificar los detalles, como el intervalo o los nombres del promedio móvil, puede hacer clic en Design gt Add Chart Elemento gt Trendline gt Promedio móvil para el resultado inmediato. El panel Formato de líneas de tendencia se abrirá en el lado derecho de la hoja de cálculo en Excel 2013 y el cuadro de diálogo correspondiente aparecerá en Excel 2010 y 2007. Para refinar su conversación, puede cambiar a la línea El panel Formato de línea de tendencia y el juego con diferentes opciones como el tipo de línea, color, ancho, etc. Para un análisis de datos potente, puede agregar algunas líneas de tendencia de media móvil con diferentes intervalos de tiempo para ver cómo evoluciona la tendencia. La siguiente captura de pantalla muestra las líneas de tendencia de 2 meses (verde) y 3 meses (rojo de ladrillo): Bueno, eso es todo sobre el cálculo del promedio móvil en Excel. La hoja de cálculo de ejemplo con las fórmulas de promedio móvil y la línea de tendencia está disponible para su descarga: hoja de cálculo de Moving Average. Te agradezco por leer y espero verte la semana que viene También te puede interesar: Su ejemplo 3 anterior (Obtener la media móvil de los últimos valores de N en una fila) funcionó perfectamente para mí si toda la fila contiene números. Im que hace esto para mi liga del golf donde utilizamos un promedio rodante de 4 semanas. A veces los golfistas están ausentes por lo que en lugar de una puntuación, voy a poner ABS (texto) en la celda. Todavía quiero que la fórmula busque los últimos 4 puntajes y no cuente el ABS ni en el numerador ni en el denominador. ¿Cómo puedo modificar la fórmula para lograr esto Im tratando de crear una fórmula para obtener el promedio móvil para el período 3, apreciar si puede ayudar a pls. Fecha Producto Precio 10/1/2016 A 1,00 10/1/2016 B 5,00 10/1/2016 C 10,00 10/2/2016 A 1,50 10/2/2016 B 6,00 10/2/2016 C 11,00 10/3/2016 A 2,00 10/3/2016 B 15,00 10/3/2016 C 20,00 10/4/2016 A 4,00 10/4/2016 B 20,00 10/4/2016 C 40,00 10/5/2016 A 0,50 10/5/2016 B 3,00 10/5/2016 C 5,00 10/6/2016 A 1,00 10/6/2016 B 5,00 10/6/2016 C 10,00 10/7/2016 A 0,50 10/7/2016 B 4,00 10/7/2016 C 20,00 En la práctica, el promedio móvil proporcionará una buena estimación de la media de la serie temporal si la media es constante o cambia lentamente. En el caso de una media constante, el mayor valor de m dará las mejores estimaciones de la media subyacente. Un período de observación más largo promediará los efectos de la variabilidad. El propósito de proporcionar un m más pequeño es permitir que el pronóstico responda a un cambio en el proceso subyacente. Para ilustrar, proponemos un conjunto de datos que incorpora cambios en la media subyacente de la serie temporal. La figura muestra las series temporales utilizadas para la ilustración junto con la demanda media a partir de la cual se generó la serie. La media comienza como una constante en 10. Comenzando en el tiempo 21, aumenta en una unidad en cada período hasta que alcanza el valor de 20 en el tiempo 30. Entonces se vuelve constante otra vez. Los datos se simulan sumando a la media un ruido aleatorio de una distribución Normal con media cero y desviación estándar 3. Los resultados de la simulación se redondean al entero más próximo. La tabla muestra las observaciones simuladas utilizadas para el ejemplo. Cuando usamos la tabla, debemos recordar que en cualquier momento dado, sólo se conocen los datos pasados. Las estimaciones del parámetro del modelo, para tres valores diferentes de m se muestran junto con la media de las series temporales de la siguiente figura. La figura muestra la media móvil de la estimación de la media en cada momento y no la previsión. Los pronósticos cambiarían las curvas de media móvil a la derecha por períodos. Una conclusión es inmediatamente aparente de la figura. Para las tres estimaciones, la media móvil se queda por detrás de la tendencia lineal, con el rezago aumentando con m. El retraso es la distancia entre el modelo y la estimación en la dimensión temporal. Debido al desfase, el promedio móvil subestima las observaciones a medida que la media aumenta. El sesgo del estimador es la diferencia en un tiempo específico en el valor medio del modelo y el valor medio predicho por el promedio móvil. El sesgo cuando la media está aumentando es negativo. Para una media decreciente, el sesgo es positivo. El retraso en el tiempo y el sesgo introducido en la estimación son funciones de m. Cuanto mayor sea el valor de m. Mayor es la magnitud del retraso y sesgo. Para una serie cada vez mayor con tendencia a. Los valores de retraso y sesgo del estimador de la media se dan en las ecuaciones siguientes. Las curvas de ejemplo no coinciden con estas ecuaciones porque el modelo de ejemplo no está aumentando continuamente, sino que comienza como una constante, cambia a una tendencia y luego vuelve a ser constante de nuevo. También las curvas de ejemplo se ven afectadas por el ruido. El pronóstico de media móvil de los períodos en el futuro se representa desplazando las curvas hacia la derecha. El desfase y sesgo aumentan proporcionalmente. Las ecuaciones a continuación indican el retraso y sesgo de los períodos de previsión en el futuro en comparación con los parámetros del modelo. Nuevamente, estas fórmulas son para una serie de tiempo con una tendencia lineal constante. No debemos sorprendernos de este resultado. El estimador del promedio móvil se basa en el supuesto de una media constante, y el ejemplo tiene una tendencia lineal en la media durante una parte del período de estudio. Dado que las series de tiempo real rara vez obedecerán exactamente las suposiciones de cualquier modelo, debemos estar preparados para tales resultados. También podemos concluir de la figura que la variabilidad del ruido tiene el efecto más grande para m más pequeño. La estimación es mucho más volátil para el promedio móvil de 5 que el promedio móvil de 20. Tenemos los deseos en conflicto de aumentar m para reducir el efecto de la variabilidad debido al ruido y disminuir m para hacer el pronóstico más sensible a los cambios En promedio El error es la diferencia entre los datos reales y el valor previsto. Si la serie temporal es verdaderamente un valor constante, el valor esperado del error es cero y la varianza del error está compuesta por un término que es una función de y un segundo término que es la varianza del ruido. El primer término es la varianza de la media estimada con una muestra de m observaciones, suponiendo que los datos provienen de una población con una media constante. Este término se minimiza haciendo m tan grande como sea posible. Un m grande hace que el pronóstico no responda a un cambio en la serie temporal subyacente. Para hacer que el pronóstico responda a los cambios, queremos que m sea lo más pequeño posible (1), pero esto aumenta la varianza del error. La predicción práctica requiere un valor intermedio. Previsión con Excel El complemento de previsión implementa las fórmulas de promedio móvil. El siguiente ejemplo muestra el análisis proporcionado por el complemento para los datos de muestra en la columna B. Las primeras 10 observaciones se indexan -9 a 0. En comparación con la tabla anterior, los índices de período se desplazan en -10. Las primeras diez observaciones proporcionan los valores iniciales para la estimación y se utilizan para calcular la media móvil para el período 0. La columna MA (10) (C) muestra las medias móviles calculadas. El parámetro de la media móvil m está en la celda C3. La columna Fore (1) (D) muestra un pronóstico para un período en el futuro. El intervalo de pronóstico está en la celda D3. Cuando el intervalo de pronóstico se cambia a un número mayor, los números de la columna Fore se desplazan hacia abajo. La columna Err (1) (E) muestra la diferencia entre la observación y el pronóstico. Por ejemplo, la observación en el tiempo 1 es 6. El valor pronosticado a partir de la media móvil en el tiempo 0 es 11.1. El error entonces es -5.1. La desviación estándar y la media de la desviación media (MAD) se calculan en las celdas E6 y E7, respectivamente. La diferencia entre el promedio móvil y el promedio móvil ponderado de una media móvil de 5 períodos basada en los precios anteriores se calcularía utilizando la siguiente fórmula: Sobre la base de la ecuación anterior, el precio promedio durante el período mencionado anteriormente fue de 90,66. El uso de promedios móviles es un método eficaz para eliminar fuertes fluctuaciones de precios. La limitación clave es que los puntos de datos de datos antiguos no se ponderan de forma diferente a los puntos de datos cercanos al inicio del conjunto de datos. Aquí es donde entran en juego los promedios móviles ponderados. Los promedios ponderados asignan una ponderación más pesada a los puntos de datos más actuales, ya que son más relevantes que los puntos de datos en el pasado lejano. La suma de la ponderación debe sumar 1 (o 100). En el caso de la media móvil simple, las ponderaciones están distribuidas equitativamente, por lo que no se muestran en la tabla anterior. Precio de Cierre de AAPL El promedio ponderado se calcula multiplicando el precio dado por su ponderación asociada y luego sumando los valores. En el ejemplo anterior, la media móvil ponderada de 5 días sería de 90.62. En este ejemplo, el punto de datos reciente recibió la mayor ponderación de 15 puntos arbitrarios. Puede pesar los valores de cualquier valor que considere adecuado. El valor más bajo de la media ponderada por encima del promedio simple sugiere que la presión de venta reciente podría ser más significativa de lo que algunos operadores anticipan. Para la mayoría de los comerciantes, la opción más popular al usar medias móviles ponderadas es usar una ponderación más alta para los valores recientes. (Para obtener más información, echa un vistazo a la Tutorial de Media móvil) Lea acerca de la diferencia entre promedios móviles exponenciales y medias móviles ponderadas, dos indicadores de suavizado que. Leer Respuesta Aprenda sobre el cálculo e interpretación de promedios ponderados, incluyendo cómo calcular un promedio ponderado usando Microsoft. Leer Respuesta Aprenda cómo los inversores usan alfa ponderada para identificar el momento de un precio de las acciones y si los precios se moverán más alto. Leer respuesta Aprenda los períodos más comúnmente seleccionados usados ​​por los comerciantes y los analistas del mercado en la creación de promedios móviles para superponerse como técnica. Leer respuesta Si está utilizando el promedio móvil de 50 días, 100 días o 200 días, el método de cálculo y la forma en que el. Leer respuesta

Comments

Popular Posts